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The previous chapter pointed out that sampling techniques based upon metamodels is a 
promising approach to estimate posterior probability density functions. This, of course, 
depends on the quality of the metamodels. In other words, such an approach can be used 
when the problem is not too non linear or irregular and when the number of parameters is 
small (usually less than a dozen).

However, history-matching problems are very complex with a very significant number of 
parameters. For instance, the petrophysical properties populating the geological model 
are very important parameters in terms of fluid displacement: they strongly influence the 
efficiency of sweeping or production. Unfortunately, there is only little information to 
describe how they spatially vary. If the reservoir model is built over a grid with millions of 
grid blocks, there are millions of unknown petrophysical values. These parameters are 
named stochastic parameters as they are generated from random draws. As explained in 
Chapter 2, the petrophysical properties that populate the reservoir model are realizations 
of random functions. They are specific parameters because of two essential features. 
They include a huge number of unknown values and they have a spatial structure.

This chapter focuses on the way to handle these very special type of parameters.

It is also worth mentioning that gradient-based optimization techniques are usually 
preferred to sampling techniques when dealing with these parameters.
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Distinct parameterization (or re-parameterization) techniques are introduced. They are 
distinguished depending on the way they impact petrophysical properties.

The list is clearly not exhaustive. 
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This chapter puts forward the two following questions. Why are we interested in 
petrophysical properties? How do we handle the uncertainties in their spatial 
distributions?
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Permeability is one of the most heterogeneous and influential transport properties. High 
permeability regions form preferential flow paths, while low permeability regions form 
barriers to flow. 

The two examples above stress the influence of permeability heterogeneity on fluid flow. 
The reservoir is assumed to be initially saturated with oil. The corresponding model is a 
horizontal grid populated by permeability values randomly drawn from the same random 
function. For simplicity, porosity is considered to be 0.20 everywhere. Water is injected 
into the reservoir (vertical injector at the top left corner, the well is perpendicular to the 
viewed cross-section) to displace oil towards the producer (vertical well at bottom right 
corner). The two log-permeability realizations shown above are characterized by the 
same mean, variance and variogram. The only difference is the seed used to initiate the 
generation process. The logarithm of permeability is displayed in the top raw. 
Permeability varies the same way, but the high/low values are not found in the same 
regions. The evolution of water saturation within the reservoir is shown in the bottom raw 
as a function of time. As expected, the way water moves into the reservoir strongly 
depends on permeability heterogeneity. At the end, the swept areas are not the same. 
This induces distinct volumes of oil produced and distinct breakthrough times.

4

Integrated reservoir characterization 
and modeling - DOI: 
10.2516/ifpen/2014001.c005



In the example presented in the previous page, we considered two realizations of the 
same random functions (same means, variances, variograms). The variogram is now 
considered as uncertain: it can be a Gaussian or an exponential variogram. The other 
parameters involved in the definition of the variogram are identical. In addition, the seed 
used to initiate the generation process is kept constant. Therefore, we obtain two 
permeability realizations with distinct smoothness (top raw). However, as the seed is 
unchanged, the high/low permeability values are located in the same regions.

Again, the reservoir model corresponds to a horizontal grid with a water injector in the top 
left corner and a producer in the bottom right corner. The reservoir is assumed to be 
initially saturated with oil and water is injected to favor the displacement of oil towards the 
producer.

Water saturation in the entire reservoir is displayed after 2000 days of injection for the 
two realizations (bottom raw). The swept areas are different. The plot on the right shows 
the corresponding simulated water cuts. The difference in the variogram type induces a 
difference in the breakthrough times of about 100 days.

5
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We consider the same production scheme as the one described on the previous page. 
The reservoir model is again a horizontal grid.

We assume that the mean, variance and variogram characterizing the log-permeability 
field are known. In addition, the water cut measured in the producer during oil production 
is known (red dots on the right plot).

The mean, variance and variogram are used to define a random function. Many 
realizations (see examples on the left) can then be randomly drawn that all respect the 
mean, variance and variogram. If considering static information solely, these realizations 
are equally likely representations of the reservoir. Flow simulation can be performed for a 
given number of these realizations to compute the output water cuts. The results are 
reported in blue on the right plot. We check that none of them reproduces the water cut 
data. We can also note the large dispersion in the simulated water cuts.

The problem to face is the conditioning to the measured water cut. These data are not 
linearly related to the log-permeability field and cannot be integrated through kriging or 
related techniques. 

6
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Different approaches can be envisioned to determine a permeability realization (or 
several) that replicates the dynamic data. 

A first possibility consists in randomly generating permeability realizations, then in 
simulating fluid flow for each of them to see whether they reproduce or not the required 
data. The process is repeated until identifying a suitable permeability realization.

The second approach is pretty close. The idea behind is still to screen the permeability 
realization space, but without performing any fluid flow simulation to check the suitability 
of the realizations. This strongly depends on the definition of a meaningful criterion to 
characterize the dynamic behavior of permeability realizations without running flow 
simulations. The reason for avoiding/limiting flow simulations is their huge computational 
overburden.

We may also randomly generate a starting permeability realization and run an 
optimization process aiming to minimize an objective function by adjusting the 
permeability realization.

The last option combines both smart screening and optimization. You can first screen the 
permeability realization space from a given criterion that does not call for flow simulation. 
This yields a good starting realization that is adjusted in a second step to minimize the 
objective function.

7
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We investigate the first option. The problem under consideration is still the same as 
before: identify a permeability realization that makes it possible to retrieve the reference 
water cut measured in the producer. Of course, this is just a toy problem with a single set 
of data measured in a single well and we may assume that getting an appropriate 
permeability realization is not too difficult.

We take a random sample of 1000 realizations and simulate fluid flow for all of them. The 
resulting simulated water cuts are then compared to the reference one through the 
definition of an objective function. 

The two plots above display the objective function value for every realizations as well as 
the corresponding histogram. A zero objective function means a perfect match. In 
practice, the perfect match is out of reach due to the complexity of the problem, the 
uncertainty in the data, in the modeling. However, for this toy problem, we may hope to 
identify suitable permeability realizations. 35 realizations over the sample of 1000 actually 
yield a satisfactory match. They provide very small objective function values (although 
slightly different from zero).

If considering a more realistic case, the chance of generating at random a permeability 
realization consistent with the production data is very close to zero. In addition, you must 
perform flow simulation any time you want to see whether a realization is acceptable or 
not. In other words, random sampling is not the solution.

8
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Geostatistical simulation techniques yield an infinite number of equiprobable realizations. 
In practice, estimating oil recovery for so many realizations is just infeasible: there is no 
way to perform a flow simulation for all of them.

Different ideas have been envisioned to screen and sort the permeability realizations 
without calling for flow simulation. A first possibility consists in identifying the ones that 
lead to extreme production behaviors. Budding et al. (1988) and Galli et al. (1990) 
proposed to proceed using connectivity analysis. Their approaches were simple and 
restricted to the analysis of static properties. Therefore, they were not able to properly 
capture the dynamic behaviors of the permeability realizations. Guerillot and Morelon 
(1992) referred to simplified flow simulations to evaluate the dynamic differences between 
permeability realizations: the pressure field, calculated assuming single phase flow, was 
assumed to be constant in time and was not updated at each time step. The multiphase 
character of flow was reflected by the saturation equation. This simplified flow simulation 
requires less computation time than the full-physics one and was run for every generated 
realizations. Based on these results, Guérillot and Morelon (1992) selected a few 
permeability realizations for which the full-physics flow simulations were performed.

9
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Since a few years, distance-based stochastic techniques have been proposed to elude 
this drawback (Scheidt and Caers, 2007). The leading idea consists in computing the 
distance between realizations from an appropriate metric. The distance is expected to 
indicate how similar two realizations are in terms of their associated response of interest. 
Clearly, the distance must be defined in order to have a good correlation with fluid flow.

A possibility may be to convert the permeability realizations (that may comprise millions 
of grid blocks) into very coarse realizations and to simulate fluid flow for these ones, 
which is obviously less computational time demanding (Scheidt et al., 2011). Then, the 
distance between two realizations can be derived from the squared difference between 
the two sets of dynamic profiles (e.g., water cuts) simulated for the coarse realizations. 
Another criterion can refer to the use of an approximate, but cheap  fluid flow simulator 
instead of an expensive full physics one. Scheidt and Caers (2007) used a streamline 
simulator; Bouquet et al. (2014) performed single-phase flow simulations to approximate 
the pressure behavior when CO2 is injected into aquifers. 

10
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In the example presented above, we refer to graph theory to compute the lengths of the 
shortest paths between the water injector in the middle of the permeability field (top 
middle figure) and producers in the four corners. The length of the link between two 
adjacent grid blocks depends on transmissivity T (hence permeability) and pressure 
(Preux et al., 2013). The four shortest paths determined for the permeability realization of 
interest can be compared with the saturation map shown below. In addition, the plot on 
the right points out a clear correlation between the lengths of the shortest paths and the 
breakthrough times. This suggests that the lengths of these paths are relevant indicators 
of the dynamic behaviors of the realizations. As such, they can be used to quantify the 
dissimilarity between two realizations.

11
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Therefore, we generate 100 permeability realizations, identify for each of them the 
lengths of the shortest paths. This step does not call for any fluid flow simulation and is 
very fast. Then, we map all realizations into an Euclidean space using a technique called 
multidimensional scaling (Scheidt and Caers, 2007). Each point in the left graph 
corresponds to a permeability realization. The following step consists in running a 
classification algorithm (k-means) to identify groups of points that are very close. These 
points represent realizations that are expected to behave more or less the same way in 
terms of fluid flow. Then, we select the realizations the closest to the centroids of the 
various groups and simulate fluid flow for these realizations solely. That way, we hope to 
cover the spread of possible production behaviors from a very limited number of fluid flow 
simulations (right plots). Last, we compare the simulated fluid flow responses to the 
available production data and identify the group of realizations whose behaviors look like 
the data.

Such approaches emerged a few years ago and research is still very active in this 
domain.

12
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In fact, the easiest and most efficient way to determine a permeability (or porosity) 
realization consistent with production data is still history-matching. In other words, an 
initial permeability guess is generated, then adjusted step by step until honoring the 
required data (i.e., minimizing the objective function). But how can we adjust a 
permeability realization (or any realization of another petrophysical property) when there 
are so many unknowns (each value in a cell is an unknown parameter) and how can we 
make sure that the adjusted realization still respects the mean, variance and variogram?

This is the issue addressed in this chapter.

13
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History-matching being the framework selected, how do we handle the parameterization 
of petrophysical properties?

14
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Many different realizations can be randomly drawn to populate the reservoir model. They 
usually encompass millions of values.

As already emphasized, two key issues are:

- how to adjust so many parameters within the history-matching process, but also 

- how to ensure that the modified reservoir model does not depart from prior information? 

An appropriate parameterization or reparameterization technique must answer these two 
questions. The word “reparameterization” can be preferred because by themselves all 
unknown petrophysical values are already parameters. The idea behind 
“reparameterization” is to define a set of intermediate parameters that drive the changes 
in the petrophysical parameters. A suitable “reparameterization” technique must first 
reduce the huge number of unknown petrophysical parameters to a manageable set of 
intermediate parameters. Second, it must ensure the preservation of the spatial structure 
of petrophysical properties whatever the modifications operated.
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The parameterization (or reparameterization) technique to be used depends on the 
problem to be solved and the nature of the data to be incorporated within the reservoir 
model. A major issue is its ability to preserve the consistency between the geological and 
reservoir models. 

This motivated many research works over the last 15 years, resulting in the development 
of several parameterization techniques. We propose to review some of them in the 
subsequent sections.

Integrated reservoir characterization 
and modeling - DOI: 
10.2516/ifpen/2014001.c005



17

As explained in Chapter 3, the building of the reservoir model can follow a hierarchical 
approach with first the simulation of a facies realization, then the simulation of 
permeability/porosity realizations that populate the facies realization.

Therefore, a reservoir model can be changed by varying either the facies model or the 
permeability/porosity model. In addition, depending on the data to be matched, it may be 
suitable to vary either the trend or the variations around the trend. For instance, a well 
test helps evaluate the average permeability around the well whereas water cuts are 
sensitive to connectivity. 

When focusing on the facies model, one may first proceed by adjusting facies 
proportions. This is more or less the same as varying the trend. Then, the facies 
proportions being fixed, one may also modify the spatial distribution of facies 
heterogeneities. 

Likewise, for permeability or porosity, it may be required to first adjust their mean values 
before paying attention to their local variations around the means. In other words, one 
can change the mean or assume that the mean is known and change the spatial 
distribution of heterogeneities.

Last, we will also envision the case of fractured reservoir and will show how the spatial 
distribution of fractures or sub-seismic fractures can be modified in order to better fit 
some production data.
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The following sections introduce various techniques that can be used to adjust the 
petrophysical property realizations. Broadly speaking, two main groups of techniques can 
be recognized: expansion-based techniques (expansion is truncated in order to end up 
with a basis of smaller dimension) and geostatistics-based techniques (make it easy to 
preserve the spatial structures).

We restrict ourselves to geostatistics-based techniques as they have known a growing 
interest over the last two decades. However, the reader interested in the first type of 
techniques can refer for instance to Gavalas et al. (1976), Oliver (1996) and Romary 
(2009) for Karhunen-Loève expansion, to Jafarpour and Mclaughlin (2009) for Discrete 
Cosine Transforms or Sahni and Horne (2005, 2006) for wavelet expansion.

Given this general context, we discriminate parameterization techniques suitable for 
varying the fluctuations of a realization around the mean, for varying the mean itself or  
for varying the spatial distribution of fractures.
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We first examine how to adjust the fluctuations of a given property around the mean. The 
case of pixel-based models only is investigated.

The concern about geological consistency when adjusting reservoir properties motivated 
the development of parameterization techniques inspired by geostatistics (Zimmerman et 
al., 1998). We distinguish three main approaches:

- the pilot point method,

- the gradual deformation method and its variants, and

- the probability perturbation method.
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These different techniques share the following features. 

1) They involve a drastic decrease in the number of parameters. For instance, if a 
permeability model is built over a grid with one million grid blocks, the number of 
parameters is decreased from 1 million to a few dozens.

2) They can be applied to modify the petrophysical properties under consideration over 
the whole  reservoir grid or only part of it. The perturbation is said global when 
applied to the entire reservoir. Otherwise, it is local.

3) They ensure the preservation of the spatial variabilities of petrophysical properties 
despite the modifications.

4) The prior information is accounted for when building the starting reservoir model and 
within the parameterization technique itself. This makes it possible to restrict the 
objective function to the dynamic data mismatch term.
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We first start with the pilot point method.
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The pilot point method was originally introduced in hydrology, but it is also widely used in 
petroleum engineering. It has been devised by Marsily et al. (1984) to calibrate kriging 
estimates to pressure data. The values of the property of interest (permeability, porosity 
or transmissivity for instance) at a few points are considered as kind of fictitious static 
data, which are adjusted to reduce the objective function. These points are called pilot 
points.

Later on, the pilot point method was opened up to conditional realizations by RamaRao et 
al. (1995). 

A closely related method, called sequential self-calibration method, was also proposed by 
Gomez-Hernandez et al. (1997) and Wen et al. (1999) for models generated from the 
Sequential Gaussian Simulation algorithm. 

The pilot point method applies to pixel-based models. It better suits continuous models 
(porosity or permeability), but can be extended to discrete (facies) ones.
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The pilot point method refers to kriging to constrain realizations to the values assigned to 
the pilot points (see Chapter 3, p. 22). As pilot points are considered as fictitious static 
data, the covariance model considered for kriging is the same as the one derived from 
static data. Static data and pilot points are handled the same way, the only difference is 
that the values of pilot points can change while those of data are fixed.

The figure on the right illustrates the basics of the pilot point method. The blue curve is a 
one-dimensional realization randomly drawn from the prior probability density function. 
This probability is assumed to be characterized by a mean, a variance and a covariance. 
The simulated realization is plotted against spatial position. A pilot point is then located at 
location 50 and assigned the value indicated by the pink dot. Initially, the realization does 
not respect this point (top figure). Then, kriging is applied twice to compel the realization 
to go through the pilot point (bottom figure). As expected, the influence of the pilot point is 
detected over an area with a radius roughly equal to the range.

The main idea behind the pilot point method is that the value of the pilot point is an 
adjustable parameter.
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Variations in the pilot point values involve variations in the realization. The example 
above is a one-dimensional porosity realization with two pilot points: one at location 300 
and the other one at 700. Their values can be modified at the same time or not. First, we 
increase the value of the pilot point at location 300 from 0.05 to 0.4. Then, we decrease 
the value of the pilot point at location 700 from 0.4 to 0.05. Last, we simultaneously 
change the values of the two pilot points. Each pilot point value is considered as an 
unknown parameter that can be adjusted to better honor a given constraint. When we 
modify two pilot points at the same time, the problem involves two parameters.
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The pilot point method suffers from a few pitfalls (Cooley and Hill, 2000; Cooley, 2000). 
These ones can occur when neglecting sources of model inaccuracy (modeling errors) 
and over-parameterization. 

Over-parameterization makes the optimization problem instable. Then, pilot points can be 
attributed extreme (unphysical) values during the matching process as the fluctuations 
are not bounded. For instance, when used to calibrate a permeability field, pilot points 
can generate strong permeability variations over very small distances.

Different strategies were investigated to elude this undesired effect. A first possibility 
consists in bounding the variations in the parameters (RamaRao et al., 1995; Gomez-
Hernandez et al., 1997). However, this approach does not seem to improve the reliability 
of the solution (Alcolea et al., 2006). Other alternatives involve the decrease in the  
number of pilot points (this implies adding the pilot point sequentially until a satisfactory 
match is obtained) or the integration of prior information into the objective function 
(Alcolea et al., 2006).
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We can refer to two distinct approaches to locate pilot points. 

Traditionally, pilot points are pre-fixed. They are often distributed so as to form a regular 
gridding. For instance, two pilot points are separated by a distance equal to the range 
along each direction. Another technique for selecting pilot point positions involves a 
combination of geological uncertainty and sensitivity to production data. Lavenue and 
Pickens (1992), Cuypers et al. (1998), and Mezghani et al. (2000) suggested to select 
pilot point positions depending on their ability to reduce the objective function. This 
approach relies on the computation of sensitivity coefficients. Of course, this can be time-
consuming. It has to be stressed that history-matching is very sensitive to the locations of 
the pilot points.

Regarding the number of pilot points, it is also often pre-fixed by the engineer before 
starting history-matching. The idea is to use the number of points required to cover the 
whole reservoir model. Another possibility involves the sequential addition of pilot points. 
A first optimization process is then run with a given number of pilot points. Then, the 
values of these points is set to their optimal values and a new optimization process is run 
with new pilot points added to the grid. The procedure is repeated until achieving a 
reasonable match.

The use of pilot points to drive the variations in the petrophysical property of interest is 
expected to induce a significant decrease in the number of parameters, more especially if 
pilot points are added sequentially. 

26
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When the pilot point method is incorporated into optimization processes, the parameters 
to be adjusted to reduce the objective function are the values of the pilot points. 

Let us consider the following two-dimensional case as a reference case. The reservoir 
model comprises 220 and 60 grid blocks along axes X and Y, respectively. The spatial 
variability of the log-permeability is described by an isotropic Gaussian variogram with a 
horizontal range of 30 grid blocks. The logarithm of permeability is shown on the top, left. 
There is one water injector in the top left corner and a producer in the opposite corner 
(bottom right). The water cut simulated at the producer is displayed on the right against 
time. The breakthrough time is about 900 days. Water saturation simulated at 
breakthrough time is represented on the bottom left. 

For illustration purposes, we assume that the objective function quantifies the water cut 
mismatch.
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As explained before, the interest of the pilot point method when incorporated into a 
history-matching process is that it gives the possibility to vary the petrophysical 
realizations populating the reservoir model from a few parameters.

In this example, we vary a starting permeability realization (top left) from two pilot points 
(indicated by black dots): one at coordinates (40,20), close to the injector, and the other 
one at coordinates (160,40), close to the producer. Their values are driven by a single 
parameter evolving from -5 to 5. The value of the first pilot point is given by this 
parameter while that of the second one is just its opposite.

For each value of the parameter, we simulate the injection of water and compute the 
water cut at the producer (top right) and the water saturation map (bottom left) at the 
reference breakthrough time (i.e., the breakthrough time determined for the reference 
model shown previously). The water cut (blue curve) obtained for the current model is 
compared to the reference one (red dots). The difference between the two of them 
provides the value of the objective function (bottom right).

At the very beginning, the values of the first and second pilot points are -5 and 5, 
respectively. Then, the value of the first one increases while that of the second one 
decreases. The breakthrough time computed for the starting model is larger than the 
reference one (1150 days instead of 900 days) and the objective function is about 6. 
Then, the increase in the parameter results in an earlier breakthrough time, which 
induces a decrease in the objective function. When it is -2.5, the breakthrough time is 
close to the reference one and the objective function is minimal. Then, increasing further 
this parameter still contributes to decrease the breakthrough time, leading to an increase 
in the objective function.

The pilot point method makes it possible to screen realizations that are modified at pilot 
points and to pick up the one, which better fits the reference data. 
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An application case (Roggero and Hu, 1998) is presented to illustrate the potential of the 
pilot point method. It is a simple synthetic case: a two-dimensional reference reservoir 
permeability model was built with a producer in the middle of the reservoir and 4 
observation wells around labeled O1, O2, O3 and O4. This reference model was inputted 
into a flow simulator to simulate a well test and compute the pressures in the five wells. 
This yields the set of reference dynamic data.
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The reference model is kept on the left for comparison purposes. However, it is now 
assumed to be unknown. The only available data are the prior probability density function 
(pdf) and the reference pressures collected at wells. 

We perform history-matching using the pilot point method to drive the changes applied to 
an initial permeability model (right) randomly drawn with respect to the prior pdf. Then, 
pilot points are sequentially added and their values are adjusted in order to reduce the 
misfit between the reference pressures and the pressures simulated for the currently 
modified model. This process is then based upon a sequence of optimization processes. 
Briefly, we add the first pilot point and optimize its value. Then, we fix its value to the 
optimal one and add two new pilot points. A second optimization process is then run 
varying the newly added pilot points and keeping the first one unchanged. This procedure 
is repeated until a reasonable match is achieved. Finally, 19 pilot points are added to 
obtain a matched model. This final constrained model captures the main trends of the 
reference model.

The number of pilot points incorporated into optimization processes can vary. It is 
decided by the engineer.

30
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The pressures simulated at wells for the initial model (blue curves) are compared to the 
reference pressures (red). There are clear differences, especially for the producer and 
the observation well O4.
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Now, we compare the pressures simulated at wells for the final model (blue curves) with 
the reference pressures (red). The final match is perfect.

This is of course a toy problem and we must not expect such a perfect result when 
history-matching a real field case.
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This graph shows the decrease in the objective function as more optimization processes 
are run. It goes from 1000 down to almost 0.01 with 8 optimization processes run one 
after another. Each optimization process is associated to newly added pilot points.

It is worth noting that one optimization process involves about 15 fluid flow simulations in 
the case studied. 
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We now focus on the gradual deformation method and its variants. For simplicity, the 
acronyms GDM is used for gradual deformation method. 
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GDM is another geostatistical parameterization technique introduced in reservoir 
engineering for compelling reservoir models to respect production history (Roggero and 
Hu, 1998; Hu, 2000).

This method involves a linear weighted combination of Gaussian random fields. The 
weights can then be considered as parameters, which are adjusted to minimize the 
dynamic data mismatch. The underlying statistical theorem is that the sum of Gaussian 
random functions is also a Gaussian random function. 

One of the simplest formulation of the GDM is shown above. It entails the combination of 
2 independent Gaussian random functions Y1 and Y2 with same mean m, same variance 
and same covariance. The weights are cosine and sine functions of the deformation 
parameter t. This deformation rule is periodic and the deformation parameter belongs to 
the interval [-1; 1]. When it is 0, Y is the same as Y1. When it is ½, Y is the same as Y2. 

Y is also a Gaussian random function with the same mean and covariance as Y1 and Y2
whatever the value of the t deformation parameter. This property holds because  Y1 and 
Y2 are independent and because the sum of the combination weights to the square is 1 
(cos2(t)+sin2(t)=1). 
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The gradual deformation relationship makes it possible to modify a realization of a 
Gaussian random function by varying a single deformation parameter.

Whatever the deformation parameter used to change the realization, the spatial variability 
is preserved. The deformation is said global when the whole realization is modified.
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The gradual deformation scheme presented above can be extended to the combination of 
any number of Gaussian random fields with the same two-order statistics (Hu, 2000).

In this case, the combination of N Gaussian random functions entails N-1 deformation 
parameters. Increasing the number of combined functions provides more degrees of 
freedom, which is of interest when performing history-matching.
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Another variant of the GDM permitting local deformation has been developed for 
providing more flexibility (Hu, 2000; Le Ravalec-Dupin et al., 2001). 

The key principle when addressing local gradual deformation is that the gradual 
combination is performed at the level of the random numbers used to generate the 
realizations instead of the realizations themselves. This prevents the occurrence of 
discontinuities between the modified area and the surrounding one. In this case the 
gradual combination formula reduces to the one displayed above where Z1 and Z2 are 2 
independent Gaussian white noises. Again, it can be shown that Z is also a Gaussian 
white noise for any value of the t deformation parameter (because of the independency 
condition and because the sum of the weights to the square is 1).

The example on the right focuses on the gradual deformation of the field in the middle 
black square. Actually, changes are also evidenced in a transition zone all around the 
target square. The thickness of this zone is about a range. The transition zone ensures a 
smooth evolution between the modified area and the surrounding one. 

This example describes the deformation of a unique sub-domain, but several sub-
domains can be simultaneously considered with a distinct deformation parameter for 
each of them. In such conditions, t becomes a vector including all the local deformation 
parameters. When the local parameterization is incorporated into a matching process, the 
increased number of deformation parameters gives more flexibility to minimize the 
objective function. In addition, when some regions are well matched, the corresponding 
deformation parameters can be removed from the set of adjustable parameters.
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A variant of the GDM, called gradual conditioning method (GCM), was developed by Ying 
and Gomez-Hernandez (2000), Hu (2002) and Capilla and Llopis-Albert (2009). The main 
difference is that the combination involves conditional fields instead of unconditional ones 
as done with the GDM. A conditional realization is a realization that respects the static 
data.

Because the leading idea behind the GCM is to ensure that the modified field also respect 
the static data, the combination weights in the GCM variant are submitted to an additional 
constraint. Their sum has to be one. 

In addition, the constraint already mentioned for the GDM according to which the sum of 
the weights to the square must be one is kept. 

Since there is an additional constraint, the basic combination scheme involves 3 random 
fields with the GCM instead of 2 with the GDM. These 3 random fields are not 
independent because they all honor the static data. Given these conditions, the 
realization built from the 3 conditional realizations is also conditional. The 3 weights used 
to respect these constraints depend on a single deformation parameter t.

Note that the GCM does not cope with local deformation. 
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The GDM can be also used to modify two-point statistics categorical models, multi-point 
statistics models and even Boolean models as will be seen for fractures in a subsequent 
section (Hu et al., 1999; Hu et al., 2001a; Hu et al., 2001b; Hu and Jenni, 2005; Jenni et 
al., 2007; Hu and Chugunova, 2008).

The two examples displayed above  describe the global (left) and local (right) gradual 
deformation of facies realizations.

Last, it has to be mentioned that cosimulation can be envisioned as a tool to modify a 
realization. Varying the correlation coefficient relating two realizations actually boils down 
to varying a gradual deformation parameter (Le Ravalec-Dupin and Da Veiga, 2011).
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When the GDM is incorporated into optimization processes, the deformation parameter 
becomes the parameter to be adjusted to reduce the objective function. 

Let us consider the following two-dimensional case as a reference case. The reservoir 
model comprises 220×60 grid blocks. The spatial variability of the log-permeability is 
described by an isotropic Gaussian variogram with a range of 30 grid blocks. The 
logarithm of permeability is shown on the top, left. There is one water injector in the top 
left corner and a producer in the opposite corner (bottom right). The water cut simulated 
at the producer is displayed on the right against time. The breakthrough time is about 
1100 days. Water saturation simulated at breakthrough time is then represented on the 
bottom left. 

For illustration purposes, we assume that the objective function quantifies the water cut 
mismatch.
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The GDM can be used to vary the petrophysical realizations populating the reservoir 
model from a limited number of deformation parameters.

We consider a given starting permeability realization (top left). It is associated to a t 
deformation parameter of -1. The simulation of water injection to push oil towards the 
producer (from top left to bottom right) provides the water cut at the producer and water 
saturation over the whole reservoir at the breakthrough time known for the reference 
permeability case (previous page). The water cut (blue line) is displayed as a function of 
time (top right figure) and is compared to the reference water cut (red dots). The water 
saturation map is shown on the bottom left. The objective function that measures the 
water cut mismatch is plotted on the bottom right graph.

The deformation parameter is varied from -1 to 1. This results in a gradual deformation of 
the entire permeability realization. Again, a flow simulation is run for each deformed 
realization, thus providing the water cut and the water saturation map. Although the 
deformation is gradual and smooth, the water cuts and saturation maps are clearly 
impacted. When the deformation parameter is -1, the simulated breakthrough time is 
larger than the reference one and the objective function is about 2. When the deformation 
parameter is -0.9, the breakthrough time increases, and the objective function too. The 
gradual variations in the permeability field produce significant variations in the flow 
behavior.

When this approach is applied for history-matching purposes, the idea is 1) to screen the 
chain of realizations by varying the deformation parameter and 2) to select the realization, 
which better fits the reference data. In this case, it is the one obtained with a deformation 
parameter of 0.4. However, even though this t value gives an objective function value 
close to 0, the corresponding permeability and saturation fields are quite different from 
the reference ones. The information content in the data is not enough to identify a single 
solution.
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The combination of two realizations creates a path in the search realization space, but it 
represents only a very tiny part of it. Investigating this path solely can help reduce, but not 
minimize the objective function. The overall method is made more efficient by iterating the 
search process. 

First, two realizations, randomly drawn from the prior pdf, are combined to create a path. 
A first optimization process is run to determine the “best” realization along this path (the 
one, which reduces the objective function as much as possible). Second, we start from 
this "best" realization and combine it with a new realization drawn again from the prior 
pdf. This yields a new path in the search space. Investigating also this path can provide a 
realization decreasing further the objective function. Then, paths are successively built 
and scanned until the data misfit is small enough. A GDM-driven optimization entails a 
sequence of optimizations.
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For simplicity, we focus on a reservoir model with two grid blocks populated by two 
values independently and randomly drawn from the prior pdf N(2.5,0.3). 

The values assigned to the two grid blocks are plotted on a two-dimensional graph. The 
abscissa gives the value of the first grid block while the ordinate gives the second one. 
The prior pdf is shown in black: it is centered around the likeliest prior realization yo.

Let y1 and y2 be two independent realizations representing the reservoir model. 
Combining these two realizations on the basis of the gradual deformation scheme yields 
an ellipse. Each point of this ellipse is associated to a given value of the deformation 
parameter

44
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Incorporating the GDM into a history-matching process is then equivalent to the building 
of a sequence of ellipses (or hyper ellipses for dimensions greater than 2) to investigate 
the search space (Le Ravalec-Dupin et al., 2000). We come back to the previous 
example with a reservoir model made of two grid blocks and assume that the minimal 
objective function value is reached for a point far away from the likeliest prior value. Are 
we able to reach it with a GDM-based optimization process?

We scan the initial ellipse and identify the deformation parameter associated to the 
realization the closest to the minimum. Then, we consider this realization as the new 
starting one and we randomly generate a new complementary realization from the prior 
probability density function. These two new realizations are used to build a new ellipse 
that we scan again to identify a realization still closer to the minimum. The process is 
repeated until reaching or getting close enough to the minimum.

45
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We focus on the application case already considered for illustrating the potential of the 
pilot point method (Roggero and Hu, 1998). 

This is a two-dimensional reference reservoir permeability model (see figure above) with 
one producer in the middle of the reservoir and 4 observation wells around, labeled O1, 
O2, O3 and O4. This reference model was inputted into a flow simulator to compute 
pressures in the five wells. This is the set of reference dynamic data.

We now run a gradual deformation based history-matching process in order to determine 
a model respecting the reference set of pressures.
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The reference model is kept on the left for comparison purposes, but it is assumed to be 
unknown. The only available data are the prior probability density function and the 
pressures collected at wells. 

We perform history-matching with the GDM to drive the changes applied to an initial 
permeability model (right) randomly drawn with respect to the prior probability. In the test 
performed, the gradual deformation process involves the combination of 10 realizations 
from 9 deformation parameters. The deformation is applied to the entire model. Four 
matching processes are run one after another, each time starting from the best model 
previously achieved. The first optimization leads to a “best” model, the second one to an 
improved “best” model, the third one too. The fourth matching process actually provides 
the final “best” model. At this point, the search process is stopped because the objective 
function is small enough.
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The pressures simulated at wells for the initial model (blue curves) are compared to the 
reference pressures (red). There are clear differences for all of the wells.
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Now, we compare the pressures simulated at wells for the final matched model (blue 
curves) with the reference pressures (red). The final match is perfect. Such a result can 
be achieved because the problem is quite simple.
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Three matching tests were performed for the application case previously described. The 
first one involves 1 deformation parameter, the second one 4, and the last one 9. They 
correspond to the combination of 2, 5 and 10 realizations, respectively. The graph above 
shows the evolution of the objective function against the number of successive 
optimizations performed. For every tests, we mention the total number of objective 
function evaluations (i.e., the total number of flow simulations performed).

Two features are stressed. 

1) Increasing the number of parameters accelerates the objective function decrease. This 
behavior is expected as an increase in the number of parameters provides more degrees 
of freedom, i.e., more flexibility to investigate the search space. 

2) Even though the objective function significantly decreases, especially during the very 
first iterations, it reaches kind of a plateau at some point. This behavior is explained as 
follows by Capilla and Llopis-Albert (2009). As more realizations are combined during the 
sequence of optimizations, the chances of significantly modifying the current realization 
from the new realizations added to the combination decreases. Thus, after a few 
iterations, the t deformation parameter remains close to zero. In other words, the current 
realization carries more and more information while the added random realizations are 
likely to depart more from the production data included into the objective function. 
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Another test was carried out by Roggero and Hu (1998) based upon the same study 
case. These authors actually run the matching process 50 times starting from 50 distinct 
initial permeability realizations. Therefore, they obtained 50 distinct final matched 
realizations. The mean of these 50 matched realizations is shown on the right and can be 
compared to the reference permeability case on the left. We observe that the mean of the 
50 matched models captures the main features or trends of the reference model.
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The variance was also computed for the 50 initial permeability realizations (left) and for 
the 50 final matched permeability realizations (right). For the initial realizations, the 
variance is about 1 everywhere (it would be 1 for an infinite number of initial realizations). 
For the matched realizations, the purple cross linking the wells highlights the uncertainty 
decrease due to the integration of pressure data into the model.
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Another method to modify the fluctuations of a realization around the mean is the 
probability perturbation method, which was introduced by Caers (2003).
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The probability perturbation method (PPM) is an alternative to the gradual deformation 
method, but it focuses on the perturbation of probabilities instead of realizations. 

The method relies on two main principles (Caers and Hoffman, 2006):

1) the use of sequential simulation: a given joint probability can be written as the product 
of a series of univariate conditional distributions. Thus, each block of the grid is visited 
randomly. For each of them, a value is drawn from the conditional probability P(A|B,C) to 
be attributed to that block. P(A|B,C) is the probability of A occurring given information B
and C. B includes the hard data and the values simulated for the blocks previously 
visited. C represents the production data. The difficulty consists in estimating the 
conditional probability. A is the variable at the grid node visited.

2) the use of pre-posterior probabilities instead of likelihoods within the decomposition of 
the posterior probability P(A|B,C). This is performed referring to the Tau-model (Journel, 
2002). 
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The Tau-model (Journel, 2002)  involves the following expressions to combine P(A|B) 
and P(A|C) into P(A|B,C). P(A) is the prior probability. P(A|B) is the probability of A
occurring given B, where B is the set of hard data plus the A values attributed to the grid 
blocks previously visited. P(A) and P(A|B) can be estimated. The main difficulty is the 
determination of P(A|C), that is the probability of A occurring given the production data.

The τ coefficients are usually set to 1. This amounts to a form of conditional 
independence.
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P(A|C) is unknown. The probability perturbation method key idea is to perform a 
stochastic search for these unknown probabilities (for every grid blocks) in order to 
achieve a realization matching the production data C.

The method relies on the perturbation relation shown above that depends on the initial 
realization yB simulated conditionally to the static data solely and the prior probability 
P(A). The r perturbation parameter that belongs to the [0; 1] interval, controls how much 
the model parameters vary in the iteration process. This relation applies locally, meaning 
that yB is the value of the initial realization in the grid block currently visited. This relation 
changes the problem. Instead of searching for probabilities P(A|B,C) (hence P(A|C)), we 
search for a single r parameter that finally yields a realization matching the C production 
data.

When r = 0, the realization y is unchanged. When it is 1, P(A|B,C) = P(A|B): we obtain a 
new realization equiprobable with the initial one (yB). This is the maximum perturbation 
step.

This search process must be repeated in order to better explore the parameter space.

In addition, the underlying spatial structure is also maintained through all perturbations.
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Just as the gradual deformation method, the probability perturbation method has been 
extended to cope with various cases.

Intrinsically, it is closely related to the sequential paradigm. Thus, it can be used with any 
of the sequential simulation techniques to produce continuous or categorical realizations, 
referring either to two-point or multipoint statistics. 

In addition, it can be applied to modify the whole reservoir model or only given sub-
domains (Hoffman and Caers, 2005).

Integrated reservoir characterization 
and modeling - DOI: 
10.2516/ifpen/2014001.c005



58

This section presents an example for which the gradual deformation method is used to 
locally adjust the petrophysical model.
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Again, we come back to the WIPP (Waste Isolation Pilot Plant) case presented in 
Chapter 2, p. 44. 

As already explained, the idea is to model the transmissivities (m2/s) in the Culebra 
Dolomite aquifer 450 m above the repository level. This aquifer is the most likely pathway 
of radionuclide transport from the repository in case of a leak. The available data consist 
of transmissivity measurements in 45 wells and head measurements in 36 wells.

In Chapter 3, p. 25, we built models consistent with the available transmissivity 
measurements solely using both estimation and simulation techniques. Given the 
boundary conditions (constant head values of 950 m and 890 m on the north and south, 
respectively, and no flow on the east and west, see chapter 4, p. 9), we simulated heads 
for the simulated transmissivity models (see Chapter 4, p. 11). We observed that heads 
can behave very differently depending on transmissivity heterogeneity. 

We now aim to make these transmissivity models consistent also with the available head 
measurements. 
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The head error is reported for each well in this figure (Le Ravalec and Mouche, 2012). It 
was computed for both the estimated model (red bars) and for a randomly simulated one 
(gray bars). The error is about 15 meters. 

However, for this case study, a model is considered as reliable provided the error is less 
than 2 m (US Department of Energy, 2004). As a result, none of these models is 
appropriate. This emphasizes the need for history-matching.
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We decided to perform history-matching using the gradual deformation method (GDM) to 
drive the changes in transmissivities. The local variant of GDM was preferred in order to 
have more flexibility. Note that the probability perturbation method could have been 
applied the same way.

The Culebra model was split into 36 regions centered on the wells with head data as 
shown above. For simplicity, the 36 regions were designed as Voronoï polygons. The 
figure on the right-hand side is a magnification of the middle red rectangle in the left 
figure. It corresponds to the area right on the top of the WIPP site. 

A region is then linked to a unique well and encloses all the grid blocks lying closer to this 
well. For performing local deformations, we assigned one deformation parameter to each 
region, which resulted in 36 parameters. 
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This figure presents the evolution of the objective function all along the minimization 
process. It involves the successive investigation of 9 different paths in the search space. 
The 9 optimization processes were sequentially run, starting each time from the best 
point obtained right before (indicated by a blue diamond). About 700 flow simulations 
were required to reduce the objective function down to 2 m. 648 of them were run only for 
estimating gradients with finite-differences. This could have been clearly avoided with the 
implementation of an adjoint state (Chavent, 1974).
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The head error obtained for each well is reported in this figure. It was computed for the 
estimated model (red bars), the first simulated one (gray bars), and the final matched 
model obtained starting from the first simulated model. 

The head errors are much smaller for the matched model. They are less than 2 m, except 
for a few wells close to the boundaries (of which well H9b, AEC7 or WIPP26). The head 
in these wells strongly depend on the specified head boundary conditions, especially in 
well H9b that is the southernmost well in the domain. 
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The figure above shows the kriging estimate and the 5 initial simulated models already 
presented. After applying the GDM-based history-matching process to each of the 5 
simulated models, we obtain 5 matched models. The matching processes resulted in 
significant changes in the transmissivity fields. However, the overall spatial variability is 
kept.
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We compare the variograms computed for both the initial (red) and final matched (blue) 
Log transmissivity models. These variograms were determined from the differences 
between the grid blocks within the WIPP site (middle red rectangle in the area modeled) 
and all of the others. The two variograms are identical for small distances while the sills 
are slightly modified. We check that the gradual deformation process ensures the 
preservation of the spatial structure.
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This figure compares the heads simulated for the 5 models initially generated and then, 
the 5 models obtained at the end of the matching processes starting from the initial ones. 
The heads computed for the kriging estimate are also shown on the top left. The effect of 
history-matching on heads is significant. For the models considered, it results in a 
displacement of the higher head values to the south.
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As there is no unique solution, we generated an ensemble of 100 initial equally probable 
transmissivity realizations constrained to the transmissivity data. Each of these 
realizations was then calibrated to both transmissivity and head data, resulting in 100 
matched transmissivity realizations. 

The ensemble mean and variance are displayed above. As expected, the variance goes 
down to 0 at wells due to the conditioning to transmissivity data and increases to 1 when 
moving away. However, it is worth focusing on the differences between the two variance 
maps (top for the initial models and bottom for the matched models) as they stress the 
informative content of the head measurements. Clearly, the variance decreases for the 
matched models, particularly in the middle WIPP sub-domain. In other words, there is 
less uncertainties regarding the model parameters due to data integration.
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The average and standard deviation of the 100 head realizations computed for the 100 
matched LogT realizations are shown on the left and right, respectively. The black 
squares on the left show the locations of the wells. The large white rectangle on the right 
indicates the location of the WIPP site. 

The head error is reduced mainly in the center of the region studied. There are still 
uncertainties all around, especially in the south. These results suggest that there are 
probably uncertainties in the boundary conditions. 
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The parameterization techniques previously introduced are applied to vary the spatial 
distribution of heterogeneities (or the fluctuations around the mean). However, they can 
be not efficient enough in various cases, especially when significant changes are required 
in target sub-domains. 

In such a case, it may be more appropriate to vary the mean of the target property (e.g., 
porosity or permeability) over one or several pre-selected sub-domains. Another possible 
option when dealing with facies realizations consists in adjusting facies proportions.
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We focus first on a few methods that have been proposed to vary the mean of a given 
continuous variable over sub-domains.
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The zonation method (Stallman, 1956; Jacquard and Jain, 1965) has been traditionally 
used in history-matching. It consists in grouping grid blocks to create a small number of 
sub-regions with constant porosity or permeability values. This zonation is performed 
before history-matching and remains fixed. History-matching is performed in a second 
step by adjusting the porosity and permeability values assigned to the various zones with 
the use of multipliers. 

The zonation method contributes to decrease the number of parameters (from the 
number of grid blocks to the number of sub-domains). However, it is not capable of 
handling the spatial variability model inferred from the static data.

The gradzone method, that permits changes in the zonation along the matching process, 
was proposed by Bissel (1994) as an improved zonation method. 
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Other methods share some ideas with the zonation method. 

The refinement indicator method (Ben Ameur et al., 2002; Grimstad et al., 2003) provides 
an adaptive parameterization technique. Following the zonation method, we consider a 
problem with regions already defined. Constant properties are then assigned to these 
regions and determined by minimizing the data misfit. Then, the current zonation is 
refined resulting in smaller sub-domains. This refinement is based upon the computation 
of refinement indicators, which indicates the effect (at first order) on the data misfit of 
adding this degree of freedom to the current set of parameters. A new optimization 
process is run to estimate the constant properties to be attributed to all sub-domains. The 
procedure is repeated by adding degrees of freedom in an iterative way until a 
satisfactory match is obtained.

Again, this approach makes it possible to decrease the number of parameters, but does 
not account for the spatial variability inferred from static data.

It is worth listing the method proposed by Berre et al. (2007) who used level-sets to 
describe the shapes of the sub-domains. This provides even more flexibility, but the pitfall 
mentioned above (no preservation of the spatial structure) is kept.
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In order to answer the need for preserving spatial variability and continuity between the 
modified sub-domains and the surrounding areas, Le Ravalec-Dupin (2010) developed a 
geostatistics-based approach rooted in the pilot point method. As already explained, the 
pilot point method provides the ability to vary the property under consideration at points in 
order to minimize the data mismatch. Besides, the pilot block method makes it possible to 
vary the mean of the property over one or several pre-selected sub-domains. The pilot 
point method refers to kriging to constrain the realizations to the pilot point values. 
Likewise, the pilot block method refers to cokriging to constrain the realizations to pilot 
block means. In this case, the mean (which is arithmetic) is considered as secondary 
information.

When this parameterization is incorporated into a matching process, it provides the ability 
to vary the means over the selected blocks in order to decrease the data mismatch. Just 
as the pilot points, the pilot blocks could be attributed extreme values. This is avoided by 
adding prior information into the objective function. 

The advantages of the pilot block method are the decrease in the number of parameters, 
and the preservation of both continuity and spatial variability.

A similar approach was presented by Fenwick et al. (2005). These authors combined the 
locally varying mean (LVM) method with the probability perturbation method (PPM). The 
LVM allows for varying large-scale structures while the PPM perturbs the small-scale 
variations.
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This example presents a one-dimensional realization constrained to a mean value of 2 
(blue), 3 (black) and 4 (red) over the block centered at location 4,000 m. The size of the 
block is 500 m, and the range of the variogram is 1,000 m. Varying the mean strongly 
impacts the realization. Changes are observed inside the target area, but also around in a 
transition zone whose size is about the range.

Two features must be pointed out: first, the continuity between the modified zone and the 
surrounding one; second, the preservation of spatial variability.
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Another emerging approach refers to multiscale simulation (Gardet et al., 2014). In this 
case, a realization is first simulated at the coarse scale. Then, the realization at the fine 
scale is simulated conditionally to the one already simulated at the coarse scale. The 
realization at the coarse scale controls the mean variations of the target property. The 
scheme can be obviously extended to more than two scales.

This multiscale simulation procedure can cope with the geostatistics-based 
parameterization previously introduced (pilot point method, gradual deformation method, 
probability perturbation method). The perturbation or deformation can be applied either at 
the coarse scale, the fine one or both. When applied at the coarse scale, the resulting 
changes are propagated to the fine scale realization.

An example is displayed above. The realization generated at the coarse scale is shown 
on the left. The one generated at the fine scale given the realization at the coarse scale is 
shown on the right. Then, the gradual deformation method is used to vary the deformation 
at the coarse scale. As expected, this impacts the fine scale realization (figure on the 
right). We observe strong variations in the coarse trend. 

As already pointed out, such an approach makes it possible to significantly vary the 
property of interest when required. In addition, it induces a strong decrease in the number 
of uncertain parameters. The number of parameters actually depends on the scale 
considered. The coarser the scale, the less the grid blocks, hence the less the unknown 
values. This makes parameterization more adaptive.
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The case of facies realizations is a bit different. Practice has shown that facies 
proportions strongly control the simulated facies realizations. In addition, there is often a 
large range of uncertainty about the local proportions of facies due to limited information. 
This is particularly true when the number of wells is small and facies objects are smaller 
than seismic resolution.

It is thus essential to investigate the possibility to locally adjust facies proportions when 
performing history-matching. A few methods have been proposed over the last years to 
address this issue. A starting point is that facies proportions are equivalent to the 
probability of occurrence of facies.

We briefly describe three of the proposed methods in the following section. The first one, 
which is based upon intersecting lines, is appropriate when using the pluriGaussian 
simulation method. It can be used to adjust facies proportions over sub-domains provided 
facies proportions are constant per sub-domain. The second approach is more general, 
but remains closely related to the probability perturbation method whose basics were 
recapped in the previous section. The last one is very pragmatic, simple, and flexible. It 
permits to handle facies proportions in very different cases.
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The intersecting line method was proposed by Liu and Oliver (2004) to vary facies 
proportions within the framework of history-matching. It strongly depends on the 
simulation technique used to produce the facies realizations, that is the pluriGaussian 
method (see Chapter 2, p. 71).

In a few words, the pluriGaussian method consists in truncating two continuous Gaussian 
realizations to obtain a facies realization. The proportions of facies and the contacts 
between facies are driven by a two-dimensional truncation scheme, the two dimensions 
being associated to the two Gaussian realizations. Usually, the truncation scheme is 
defined from rectangles. Each rectangle is associated to a given facies. As facies 
proportions are related to the surfaces of the rectangles, an increase in the surface 
induces an increase in the proportion.

In the example presented above, the proportion of the light blue facies are decreased 
from 15 to 5 % while that of the yellow facies increases from 55 to 65 %. The truncation 
scheme and the proportion of the dark blue facies being fixed for once, the spatial 
distribution of this facies on the final realizations is unchanged. The only visible features 
are a reduction in the size of the light blue facies heterogeneities, which is compensated 
by the yellow facies.

Integrated reservoir characterization 
and modeling - DOI: 
10.2516/ifpen/2014001.c005



78

Liu and Oliver (2004) suggested to build the truncation scheme from 3 lines intersecting 
each other instead of considering rectangles. The locations of the lines are defined from 
coefficient r and angle θ . r is the distance of the thresholding line to the origin and θ is a 
rotation angle. There are 2 parameters per line. By varying these parameters, Liu and 
Oliver (2004) showed that they can adjust facies proportions to match the production 
data.

On the example shown above, line (1) only is moved. This induces an increase in facies 
B proportion and a decrease in facies A proportion. That of facies C is unchanged.

This approach can be envisioned as far as facies proportions are stationary over the 
region where they are optimized. The extension to non stationary proportions is not 
straightforward. In such a case, the truncation scheme depends on grid blocks meaning 
that there would be too many parameters to handle.
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Another possibility to vary facies proportions over given regions was suggested by 
Hoffman and Caers (2007). This method was implemented within the local variant of the 
probability perturbation method. It involves a new relation to couple local facies 
proportions to local perturbation parameters.

A difficulty is that it has to be decided first whether proportions must be increased or 
decreased. To make a choice, Hoffman and Caers (2007) perform two flow simulations: 
one with an increase and another with a decrease in facies proportions over all regions. 
Then, the sign of the perturbation is decided depending on the simulation that decreases 
the production data mismatch.
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A simple and practical alternative was devised by Ponsot-Jacquin et al. (2009). It 
depends on the ratio of the proportions of a group of facies to the proportions of a larger 
group of facies, this larger group including the first one. 

Distinct ratios can be assigned to distinct regions. They become parameters. When 
incorporated into history-matching, they can be adjusted to minimize this data mismatch.

To illustrate the method, we consider a case with 4 facies (light blue, dark blue, yellow 
and red) with initial proportions all equal to 25%. We define the proportion ratio as the 
ratio of the proportions of the 2 blue facies to the proportions of the 4 facies. As a result, 
an increase in this ratio leads to an increase of the blue facies to the detriment of the 
yellow and red facies.
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We apply the ratio method to modify the vertical proportion curves (see Chapter 3, p. 29) 
in two regions, R1 and R2. The vertical proportion curves provide facies proportions 
against depth. The curves on the left are the initial vertical proportion curves. There are 4 
facies: two shales denoted A1 (dark blue) and A2 (light blue), and two sands denoted S1 
(yellow) and S2 (orange).

We apply the ratio method to perform the following changes.

In region R1, the ratio of shale is set to 80% and the ratio of shale A1 to shale A2 to 80%. 

In region R2, the ratio of sands is set to 80%, the ratio of shale A1 to shale A2 to 0%, and 
the ratio of sand S1 to sand S2 to 80%.

The resulting vertical proportion curves are displayed in the middle. They satisfy the 
required variations. However, this method can generate discontinuities at the boundaries 
of the modified regions.

A variant inspired by the pilot block method was proposed by Tillier et al. (2010) who 
combined the ratio method with cokriging to remove the undesired discontinuities. The 
resulting variations for the example studied are shown on the right. 
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We now move to a slightly different issue, the variations in the spatial distribution of 
fractures. In this case, fractures are modeled as objects (Chapter 2, p. 82).

The presence of faults seriously affects fluid flows. Conductive faults contribute to create 
preferential flow paths to the wells and accelerate water breakthrough. On the other hand, 
sealing faults generate compartmentalization problems. A difficulty is that many faults are 
not detected because they are below seismic resolution. These undetectable faults are 
called sub-seismic faults.

Again, the integration of production data helps better describe the network of fractures, 
especially of sub-seismic faults, provided suitable parameterization techniques are 
available. The traditional approach consists in varying the parameters characterizing a 
fault (position, orientation, length) without accounting for the others. When doing so, the 
number of parameters is very important as faults are individually handled. In addition, 
such techniques can lead to geologically inconsistent models that cannot be used for 
predictions.
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A first method was developed by Hu and Jenni (2005). However, the integration of 
dynamic data turned out to be difficult within this framework. 

This method was then revisited by Verscheure et al. (2012). These authors proposed a 
quite different procedure. First, they derive an initial low-resolution density map from the 
seismic fault network. The organization of the sub-seismic faults is assumed to be the 
same as that of the seismic faults. Second, a multiplicative cascade algorithm is used to 
convert the low-resolution density map into a high-resolution density map. The algorithm 
generates a scaling structure by recursively replicating a given pattern at different scales. 
The resulting map is eventually used to draw the population of the centers of the sub-
seismic faults following a Poisson point process. Last, fault lineaments are produced from 
a power-law distribution.
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The centers of the sub-seismic faults are associated to a Poisson point process. Thus, a 
set of points is first generated and the gradual deformation method (see previous sub-
sections) is applied to modify the coordinates of these points. 

The figure on the right shows the possible trajectories of sub-seismic faults when varying 
continuously the deformation parameter. A single parameter can be used to perturb the 
location of one, several or all sub-seismic faults.

This facility is very useful when integrated into history-matching procedures. The problem 
boils down to the determination of the deformation parameters that minimize the objective 
function. 

The advantages of this method are twofold: the number of parameters is drastically 
reduced and the geological consistency of the network of sub-seismic faults is 
maintained.
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The methodology presented above was applied to match water cuts at several wells by 
varying fault positions. The results are shown above for well P1. Compared to data, the 
water breakthrough occurs too early for the initial model. This is improved for the 
matched model.

Integrated reservoir characterization 
and modeling - DOI: 
10.2516/ifpen/2014001.c005



86

The initial network of sub-seismic fault is displayed on the left and the final one 
determined from the minimization of the data mismatch on the right. If focusing on well 
P1, we note that the number of faults has been decreased, which contributes to delay the 
water breakthrough as desired.
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As a conclusion, a suitable parameterization technique when dealing with petrophysical 
properties has to check at least two features. It must reduce the number of parameters 
(from millions to dozens) and it must preserve the spatial variability of the property under 
consideration.

Several techniques have been described in the literature to answer the problem. The one 
to be selected depends on the problem to be solved. It can even be better to apply two 
distinct parameterization techniques, simultaneously or not.
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